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Introduction: Microcystin-leucine arginine (MC-LR) is a toxin with harmful
effects on the liver, kidney, heart, and gastrointestinal tract. So, effective
removal of MC-LR from water resources is of great importance. The aim of
this study was to remove microcystin-LR (MC-LR) from aqueous solution by
Titanium Dioxide (TiOy).

Materials and Methods: In the present study, TiO,, as a semiconductor, was
used for photodegradation of MC-LR under ultraviolet light (UV). The
Response Surface Methodology was applied to investigate the effects of
operating variables such as pH (A), contact time (B), and catalyst dose (B) on
the removal of MC-LR. The MC-LR concentration was measured by high-
performance liquid chromatography (HPLC).

Results: The results showed that single variables such as A, B, and C had
significant effects on MC-LR removal (pyae < 0.05). In other words, increase
of the contact time and catalyst dose had a positive effect on enhancing the
removal efficiency of MC-LR, but the effect of pH was negative. The analysis
of variance showed that BC, A% and C? variables had a significant effect on
the MC-LR removal (pyae < 0.05). Finally, the maximum removal efficiency
of MC-LR was 95.1%, which occurred at pH = 5, contact time = 30 minutes,
and catalyst dose = 1 g/I.

Conclusion: According to the findings, TiO,, as a photocatalyst, had an
appropriate effect on degradation of the MC-LR.

Response Surface Methodology.

Citation: Jafari N, Ebrahimi A, Ebrahimpour K, et al. Optimization and Modeling of Microcystin-LR Degradation by
TiO, Photocatalyst Using Response Surface Methodology. J Environ Health Sustain Dev. 2020; 5(3): 1063-76.

Introduction

Algal blooms and cyanobacteria species can
cause many problems for drinking water
resources by generating cyanotoxins™ ?. Presence
of cyanobacterial, as biological pollution, in
freshwater environments has adverse effects
on the water quality including its taste,
odor, color, and even microbial diversity * *.
Discharge of nutrients, such as Nitrogen and
Phosphorus, from agricultural watersheds to the

freshwater resources is a major cause of
cyanobacterial propagation > °. Popular algal bloom-
forming  species  include  Aphanizomenon,
Cylindrospermopsis, Dolichospermum, Microcystis,
Nodularia, and Planktothrix and Trichodesmium ’.
Toxins of cyanobacteria include hepatotoxins,
neurotoxins,  cytotoxins,  dermatotoxins, and
gastrointestinal toxins that threaten the human and
the environment health ®*'. Among 80 variants of
the cyanotoxin family, microcystins (MCs) are the
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most well-known * . Furthermore, microcystin-
LR (MC-LR) is one of the most toxic members of
the microcystins group ' **. Microcystin-LR is
hepatotoxic; acute and chronic exposure to MC-
LR can lead to liver cancer in humans and have
harmful effects on the Kkidney, heart, and
gastrointestinal tract *'. The World Health
Organization  (WHO)  recommended  the
permissible level of 1 pg/L of MC-LR in the
drinking water'® *°. So, the removal of MC-LR
from drinking water resources is very necessary
for human health and environmental safety *°.
Many treatment methods, such as coagulation,
flocculation, activated carbon adsorption, rapid
sand filtration, and membrane separation were
used for removing MC-LR from water body ** *®
2 In this regard, the traditional water treatment
systems can remove cyanobacterial cells, but
they have limited capability in removing
cyanotoxins due to different practical, economic,
or environmental disadvantages 2 %. The
traditional treatment process can also release
cyanotoxins into the water by ripping the
cyanobacterial cells, , which increases the risk of
secondary pollution . In the past decade, the
Advanced Oxidation Process (AOP;), such as
photocatalytic oxidation process, have received
significant attention due to their effectiveness in
degradation and mineralization of the resistant
compounds such as cyanotoxins ** %. Various
studies used the photocatalytic oxidation process
to remove the environmental pollutants. For
example, ZnO, UV-H,0, and bismuth vanadate
(BiVOy,) is used for removal of microcystin-LR,
Cyanobacterial taste and  bisphenol A,
respectively ® 2°? The effect of TiO, was studied
for degrading various pollutants, such as Azo dye,
phenol, humic acid, nodularin, and cyanotoxin.
The results showed that TiO, had high efficiency
in the removal of these pollutants 2**. The
photocatalytic oxidation process is a green
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technology that mineralizes the organic molecules
into CO, and inorganic ions by th producing
strong reactive oxidizing species like hydroxyl
radicals (OH"), superoxide anion radical (O, ),
and hydroperoxyl radical (HO,) ** %" % Among
the photocatalytic oxidation technologies (POTS),
Titanium dioxide (TiOy) is a highly effective
semiconductor material able to decompose water
contaminations effectively; TiO, has favorable
properties such as high chemical and thermal
stabilities, nontoxicity, commercial availability,
and low cost *. Usually, TiO, can generate photo-
excited electron-hole pairs by absorbing
ultraviolet light. Later, the photo-excited electron-
hole pairs reduce and oxidize the reactants
adsorbed on the semiconductor surface. So, the
reduction and oxidation reactions are the major
mechanisms in water photocatalytic purification
32,3 gp, the aim of this study was to find the
optimum condition for the TiO, photocatalyst in
removing MC-LR under UV light using Response
Surface Methodology (RSM) based on the Central
Composite Design (CCD).

Materials and methods

Materials

Microcystin-LR (MC-LR) (Molecular Formula:
CaoH74N1oO1 , Molecular Weight: 995.2 g/mol)
was considered as the standard solution (10 pg/ml)
purchased from Sigma-Aldrich (Figure 1).
Furthermore, TiO, nanopowder (> 99% anatas)
was prepared from Sigma-Aldrich Co. (USA). The
standard solutions were prepared by dissolving
standard powder of MC-LR in 1 ml of methanol
(100%) and diluted with distilled water (Merck co,
Germany). All solutions were stored at 4 °C until
use . The other chemical materials such as
methanol,  acetonitrile,  trifluoroacetic  acid
(TFA) (HPLC-grade), sodium hydroxide, and
Hydrochloric acid were purchased from Merck
Company (Germany).
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All experiments were conducted with a mixture
of catalysts; 10 ml of aquatic solutions were mixed
with 500 pg/L MC-LR in 25 ml Pyrex beakers. For
adjusting the pH of samples, NaOH (0.01M) and
(0.01M) HCI were used. The aggregates were
eliminated and then the samples were located in an
ultrasonic bath (10 min). For photocatalyst
suspensions, 100 W mercury lamp (wavelength of
254 nm) was placed 10 cm above the Pyrex
beakers. Initially, the samples were stirred (30
min) in darkness to reach the balance. In addition,
UV lamps were turned on and placed under
magnetic  stirring to keep the suspension
uniformity. At the end of the required contact time,
UV lamps were turned off and samples were taken.
Before measuring the residual MC-LR content by
HPLC, the samples were filtrated with syringe
filters (0.22 um) to separate the catalyst particles.

Characterization study
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Figure 1: The molecular structure of MC-LR

To investigate the structure and surface
morphology of TiO, nanoparticles, the field
emission scanning electron microscope (FESEM)
(FEI Quanta 200, USA) and X-ray diffractometer
(XRD, Bruker D8 Advance, Germany) were used.
Moreover, the FTIR spectrum of TiO, was studied
by an IR spectrometer (Jasco 6300, Japan).

Design of experiments

In this study, RSM was used to optimize the
number of experiments and to evaluate the
interactive effects of the significant operating
parameters in the MC-LR degradation by TiO,
photocatalysts using the Design-Expert software
10 **  According to the Central Composite
Design (CCD), as the most widely used method in
evaluating interactive effects of the operating
parameters, three variables of pH (A), contact time
(B), and catalyst dose (C) were selected as the
model variables (Table 1).

Table 1: Actual and coded values of the independent variables using CCD

Variables Unit

PH (A)
Contact time (B) min
Catalyst dose (C) g/l

The coded values of independent variables were
determined using Eq. (1):

Xi = $2X0 (1)

Where, Xi is a coded value of the independent

variable, X, is the center point value, and AX is the

Actual values of the coded values

-2
4
5
0.2

-1 0 +1 +2

5 7 9 10
10 20 30 35
0.4 0.7 1 1.2

change value “°. To study the interaction among
the independent and dependent variables, the
regression model was used (Eg. (2)):

Y = o+ Y fXit Y BiXi+ Y BiXiX )
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Where, Y is the predicted response of the MC-
LR removal, g, is the model constant, i is the
linear coefficient, Bii is the quadratic coefficient,
and the gij is the cross product coefficient.

Analysis and calculation

The concentration of MC-LR was quantified
using an HPLC system (Jasco PU-2080, Tokyo,
Japan) equipped with a quaternary mixing pump,
an inline vacuum degasser, UV-Vis detector (UV-
2075 plus), and an auto-injector (AS-2055 Plus).
Samples were separated by the Cig column (150 x
4.6 mm, 5 pm particles). Combination of
acetonitrile and Milli-Q water with a volume ratio
of 50:50 plus 0.1% fluoroorotic acid (TFA) was
used as the mobile phase with a flow rate of 1
ml/min. Due to the typical absorption spectra of
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MC-LR, the wavelength of UV detector was set at
238 nm . The injection volume was 100 pl with a
flow rate of 1 ml/min and the total run time was 15
min. The Borwin Chromatography software
(Version 1.50) was used for data acquisition and
HPLC processing. MC-LR degradation rate was
determined by (Eq. (3)):

Degradation rate (%) = C, — C/C, *100 3

Where, Cy and C are the initial and the residual
concentrations of MC-LR, respectively.

For validating the analytical method, the relative
recovery, limit of detection (LOD), and limit of
guantification (LOQ) were calculated according to
the recommendations set by the International
Conference on Harmonization (ICH) (Table 2).

Table 2: Analytical method validation parameters for determination of MC-LR by HPLC

Parameter
MC-LR

Ethical issues

This study was conducted with approval of
Isfahan University of Medical Sciences. Research
Ethics Code was IR.MUI.REC.1395.3.847.

Results

Characterization study

The TiO, photocatalysts was characterized by
FESEM, FTIR, and XRD (Figure 2). These TiO,
particles have asymmetrical and angular shapes
(Figure 2a). Figure 2b shows the FTIR spectra of
TiO, nanoparticles. In the FTIR spectra of TiO,,
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Recovery (%)
102 £ 9.5

LOD (pg/L)
4.04

LOQ (ug/L)
12.24

the wavelength of 3408 cm™ was associated with
the Hydroxide bonds (O-H), indicating the
presence of water and moisture molecules.
Furthermore, the wavenumber 455 cm™* was
related to the metal hydroxides bonds > *'. The
spectrum of XRD related to the TiO, is
demonstrated in Figure 2c. According to the
XRD patterns, the index peaks of synthetic TiO,
located at about 20 = 25.33°, 37.8°, 30.57°, 48.1°,
and 53.9° correspond well to the anatase phase of
Tio, %,
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Figure 2: SEM (a), FTIR (b), and XRD (c) geraphs of TiO, catalyst

Analysis of variance and model fitting

Eventually, 20 different experimental runs
were designed by CCD, which are portrayed in
Table 3 along with the predicted and actual MC-
LR removal values. The results of analysis of
variance for the removal of MC-LR are presented
in Table 4. According to this table, F-value of the
quadratic model was 80.78, indicating that the
model was significant. If the “Prob > F” value of
each parameter was less than 0.05, the effect of
this parameter effect on MC-LR removal is
significant. Therefore, single parameters of A, B,
and C are significantly different. Except for AB,
AC, and B2 the P-values related to the
interactions of BC, A% and C* were less than 0.05
and indicated a significant effect on the MC-LR

removal (p-value = 0.0410, 0.0001, and P =
0.0382, respectively). So, other quadratic forms
did not have any significant effect on the model
and could be removed from the final equation.
The F-value lack of fit in this model was 3.23,
showing that the lack of fit was not significant. In
other words, the model fitted (p-value > 0.05) the
experimental data and errors of the experiments
were low. The values of R? and adj R® were
0.9864 and 0.9742, respectively, demonstrating
that the results of the model were fitted to the
experimental results.  Finally, these relations
showed that this model was significant. To

investigate the effects of variables, all
experiments were carried out in various
combinations of the variables; they were
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statistically designed using central composite
design (CCD). To access a final model with
significant predictors, insignificant (p-value >
0.05) interactions were eliminated from this
model. Thus, other significant variables were
retained in the final regression model. So, the

Jafari N, et al.

following equation was derived as the final
equation using coefficient of the coded variables
for removal of MC-LR (Eq. 4):

Removal of MC-LR (%) = 76.05 - 5.44 A +
394 B +748C-1.16 BC + 3.38 A* + 1.02 C*

(4)

Table 3: Experimental design conditions and responses of various experimental run

MC-LR removal (%0)

C: Catalyst dose (g/1) Actual Predicted
1 90.70 89.42
1 78.60 79.99
1 85.10 85.03
0.4 73.40 73.05
1 95.10 95.50
0.7 75.42 76.05
0.7 77.35 76.05
0.7 76.37 76.05
0.24 65.80 67.00
0.7 80.80 81.02
0.4 85.60 83.79
0.4 62.60 61.78
0.4 70.60 71.46
0.7 74.99 76.05
0.7 75.53 76.05
0.7 77.10 76.05
0.7 76.70 75.62
0.7 68.50 69.00
0.7 90.40 92.20
1.16 90.30 89.82

Table 4: The results of analysis of variance in removing MC-LR

RUN. NO _ Varia}bles
' A: pH B: Contact time (min)

1 5 10

2 9 10

3 9 30

4 5 10

5 5 30

6 7 20

7 7 20

8 7 20

9 7 20

10 7 35.25

11 5 30

12 9 10

13 9 30

14 7 20

15 7 20

16 7 20

17 10 20

18 7 4.75

19 4 20

20 7 20

Source Sum of Squares  df

Model 1429.02 9
A: pH 374.08 1
B: Contact time 196.48 1
C: Catalyst dose 708.3 1
AB 0.55 1
AC 1.71 1
BC 10.81 1
A? 123.75 1
B? 2.14 1
c? 11.20 1
Residual 19.66 10
Lack of Fit 15.01 5
Pure Error 4.65 5
Cor. Total 1448.68 19

Mean Square  FValue pvalue Prob>F
158.78 80.78 < 0.0001
274.08 190.3 < 0.0001
196.48 99.96 < 0.0001
708.3 360.33 < 0.0001

0.55 0.28 0.6068
171 0.87 0.3728
10.81 5.50 0.0410
123.75 62.96 < 0.0001
2.14 1.09 0.3216
11.20 5.70 0.0382
197

3.00 3.23 0.1122*
0.93

Std. Dev.: 1.40; Mean: 78.55; C.V. %: 1.78; PRESS: 136.74; R2 : 0.9864; Adj R2 : 0.9742; Pred R2 : 0.9056;

Adeq. Precision: 34.08.
*not significant

JEHSD, Vol (5), Issue (3), September 2020, 1063-76


http://dx.doi.org/10.18502/jehsd.v5i3.4278
https://dor.isc.ac/dor/20.1001.1.24766267.2020.5.3.6.5
https://jehsd.ssu.ac.ir/article-1-261-en.html

[ Downloaded from jehsd.ssu.ac.ir on 2026-02-13 ]

[ DOR: 20.1001.1.24766267.2020.5.3.6.5 ]

[ DOI: 10.18502/jehsd.v5i3.4278 |

Jafari N, et al.

The correlation between actual, predicted, and
normal graphs of the residuals in removing MC-
LR are presented in Figures 3a and b. According to

(a) Predicted vs. Actual

2]

[al}

Predicted

Apctual
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these figures, data distribution shows a straight
line, which indicates that the experimental data are
fitted by the response predicted values.

(b) Normal Plot of Residuals

o5

[
hisitialeiiidig o 1

Laisipade
=)

Hormal ¥ Probability

Externally Studentized Rasziduals

Figure 3: Model evaluation plots for the removal of MC-LR by TiO,: the experimental data vs. the predicted value plot
(a); the normalized residual plot (b)

Discussion

Effect of variables on
degradation of MC-LR

Effect of single factors

Among the pH, contact time, and catalyst dose
variables, factors with high mean square and high F-
value had the highest effect on the photodegradation
of MC-LR by TiO,. So, Catalyst dose (c) with mean
square = 703.3 and F-value = 360.3 were the most
important  parameters in  MC-LR  removal.
Moreover, the pH and contact time variables had
lower importance than catalyst dose in MC-LR
degradation.

photocatalytic

Effect of pH

The effect of pH on the removal of MC-LR at
various ranges of pH is presented in Figure 4a. This
figure shows that the pH variable has a negative
effect on MC-LR removal. So, the degradation rate
of MC-LR increased with decrease of the pH.
Therefore, the results indicated that MC-LR
removal had increased in the acidic range.
Generally, in photocatalytic systems, the acidic
range was determined considering the strong
electrostatic adsorption between the positive charges
of catalyst and the negative charges of toxin were

determined as the optimal pH in photocatalytic
degradation of toxins. So, the forces between the
catalyst particles and MC-LR molecules were
attractive forces resulting in high photodegradation
2 Samy et al. reported that the photocatalytic
degradation of chlorpyrifos was increased in the
acidic pH due to the effect of attractive forces
between the catalyst particles and chlorpyrifos
molecules *°. In addition, other similar studies
showed that the removal efficiency of direct red 16
(DR16), methylene blue, and Acid Blue 113 dyes
was decreased in alkaline pH. In acidic pH,
photocatalytic ~ activity = was improved by
electrostatic  force interactions between dye
molecules and surface of the catalyst *"*.
Fakhravar et al. reported that the degradation rate of
Metronidazole increased with decrease of the initial
pH 50

Effect of irradiation time

Figure 4b demonstrates the effect of contact times
on the removal efficiency of MC-LR using TiO;
photocatalysts. The results indicated a positive
relationship between contact time and MC-LR
degradation. In other words, increase of the contact
time enhances the MC-LR removal efficiency
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because increase of the contact time enhances the
reaction time, and increases probability of the
interaction between MC-LR and electron-hole pair
subsequently. Rahimi et al. showed that
degradation rate of acid orange 10 increased by
increase of the contact time. In other words, when
the contact time increased from the start of the
process to 150 min, the removal efficiency reached
from 0 to 94% “*. Similar studies by Sheikh Asadi
et al. and Rafiee et al. reported that enhancing the
contact time increased the removal efficiency of
Bisphenol A and DR16 dye, respectively. This is
due to the fact that increased contact time
enhanced the photocatalytic activities in the
catalyst surface ** >,

Effect of catalyst dose
The effect of the TiO, catalyst dose on the
removal efficiency of MC-LR is represented in
(a) One Factor

=]
=1

MC-LE Remaval (¥5)

A pH

(©)

]
=

MC-LE Removal (%)

Jafari N, et al.

Figure 4c. This figure shows that the degradation
rate of MC-LR increases with increasing TiO,
catalyst dose because the active sites of catalysts
rise and cause absorption of MC-LR and light,
which increase the photocatalytic degradation
consequently. Zhang et al. reported that degradation
rate of the MC-LR enhanced with the increase of
catalyst dose due to the surface area of the catalyst
%3 Koh et al. and Arabzadeh et al. reported that the
photodegradation rate of Methylene Blue (MB) and
tartrazine enhanced when the catalyst dose
increased, respectively. Increase of the catalyst dose
can enhance the photocatalytic active sites to absorb
more photons. This generates more hydroxyl and
superoxide radicals and finally degrades more
pollutant molecules ** *°. Therefore, given the cost
and effects of the catalyst, choosing the optimum
catalyst dose is very indispensable.

One Factor
(b)

MC-LE Remowval (%)

B: Contant tims {min)

One Factor

0.8 oG

C: Catalyst dos= (z1)

Figure 4: The effect of pH (a), contact time (b) and catalyst dose (c) on MC-LR degradation (%)
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Interaction relationship between studied
variables

Figure 5 illustrates the effects of interactions
between different variables in the MC-LR
degradation (%) by the 3D-dimensional surface-
response plots gained from the quadratic model.
Figure 5a shows the 3-D response surface plot of
the MC-LR removal efficiency in various
contact times vs. pH. According to this figure, a
decrease in pH and an increase in contact time,
increased the removal efficiency of MC-LR.
The effect of the pH on MC-LR degradation in
this figure is more evident than the contact time.
However, ANOVA results showed that P-value
of the interaction effect coefficients of the
contact time and pH was equal to 0.6068, which
is not significant. The interaction effect between

MC-LR Removal (%)

15
B: Contant time {(min) 1075

(@

MC-LR Removal (%)

©
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catalyst dose and pH in the MC-LR degradation
(%) is illustrated in Figure 5b. As it shows,
increase of the catalyst dose and reduction of the
pH boost the MC-LR removal efficiency.
However, the ANOVA results indicated that
interaction effect coefficients of the catalyst dose
and pH were not significant (P-value = 0.3728)
and did not display any interaction effects.
Figure 5c shows that the catalyst dose and
contact time had a positive effect on the removal
efficiency of MC-LR. This means that the
catalyst dose and contact time display interaction
effects on MC-LR removal. Moreover, the
ANOVA results approved that interaction effect
coefficients of these two parameters were
significant (P-value = 0.0410).

MC-LR Removal (%)

04 5

(b)

Figure 5: Interaction between different variables: (a) Contact time vs. pH; (b) Catalyst dose vs. pH; (c) Catalyst dose
vs. Contact time in the MC-LR degradation (%)
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Optimization of various process parameters

The optimum amount of various variables
including pH (A), contact time (B), and catalyst
dose (C) in the removal of MC-LR were
optimized by the RSM model. The desirable goal
in the RSM model was set on the maximum
removal percentage of MC-LR. So, the highest
MC-LR removal efficiency was about 95.1% at
these conditions: pH = 5, contact time = 30 min
and catalyst dose = 1 g/l. Finally, in order to
estimate the validity of optimal conditions in the
removal of MC-LR, a series of experiments were
performed. The findings showed a good
accordance between these results and predictions
of Design Expert.

Photocatalytic mechanism

TiO, absorbed photons, was excited, and
generated e~ and h* pairs *. The photodegradation
reactions are occurring in the presence of
ultraviolet (UV) light source. Initially, a photon is
absorbed by the photocatalyst after irradiating the
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UV light. This causes charge separation and
excites an e to the conduction band (CB) of the
catalyst. As a result, "OH is generated by oxidation
of H,O molecules with photogenerated holes and
oxygenated species that attack the MC-LR
molecules. The generated e by photon absorption,
either react with oxygen absorbed on the catalyst
surface or react with H,O to produce <O, radicals
or it may reduce the MC-LR (Figure 6). The hole
(h*) is responsible for generating ‘OH radicals by
reacting with OH ions or H,0 * *" % When "OH
radical is formed, it reacts instantly *°. The
probable photochemical reactions in the
degradation of MC-LR by TiO, are presented as
follows:
TiO, + hv—h" +e
TiO, (h") + H,0 — *OH
TiO, (e) + 0, -0,
‘0, +H,0—"OH
MC-LR + "OH
degradation product

(and/ar)

0, —

D-Glu (iso)

I Hi /

H Lie
Adda [T

L-Arg o
NH D-MeAsp (iso)

HNZ ™ NH.

MC-LR

L

Degradation products

Figure 6: Degradation mechanism of MC-LR.

Conclusions

The results showed that increased contact time
and catalyst dose as well as reduction of pH
boosted the removal efficiency of MC-LR.
According to the results, the highest removal
efficiency of MC-LR was 95.1% that was observed
in pH = 5, contact time = 30 min, and catalyst
dose = 1 g/l. According to the findings, TiO,, as a
common photocatalyst had a suitable effect on

JEHSD, Vol (5), Issue (3), September 2020, 1063-76

degradation of MC-LR. However, we suggest
combining TiO, with metal and non-metallic
semiconductors to increase the removal efficiency
of MC-LR. Moreover, it can be concluded that
RSM is one of the efficient methods for decreasing
costs and the number of experiments.
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